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Abstract 

A strategy is presented for refining anomalous scatter- 
ing models and calculating protein phases directly from 
the Bijvoet and dispersive differences of a macro- 
molecular multiwavelength anomalous diffraction 
(MAD) experiment. This procedure, incorporated in 
the program MADPHSREF, is especially amenable for 
exploiting the weak perturbations to normal scattering 
produced by inner-shell electronic transitions of 
asymmetric metal and protein ligand assemblies. The 
protocol accounts for more than one type of anomalous 
scatterer, incorporates stereochemical restraints, treats 
the data in local scaling groups, and partly compensates 
for correlated errors. Approximating maximum likeli- 
hood by averaging observation variances and 
covariances over all values of phase considerably 
improved error estimation. Probabilistic rejection of 
aberrant observations, re-evaluated before each refine- 
ment cycle, improved refinement convergence and 
accuracy compared with other less flexible rejection 
criteria. MADPHSREF allows the facile combination of 
MAD phase information with phase information from 
other sources. For the suifite reductase hemoprotein 
(SiRHP), relative weights for MAD and multiple 
isomorphous replacement (MIR) phases were deter- 
mined by matching histograms of electron density. 
Accurate metal-cluster geometries and the associated 
errors in atomic positions can be determined from 
refinement against anomalous differences using normal 
scattering phases from a refined structure. When 
applied to MAD data collected on SiRHP, these 
methods confrmed the Fe4S 4 cluster asymmetry 
initially observed in the refined 1.6A resolution 
structure and resulted in a MAD-phased, experimental, 
electron-density map that is of better quality than the 
combined MAD/MIR map originally used to determine 
the structure. 

1. Introduction 

Determining phases for macromolecular crystal struc- 
tures from wavelength-dependent anomalous scattering 
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amplitude variations is attractive in conceptual sim- 
plicity (Karle, 1989; Hendrickson, 1991), but is often 
experimentally demanding, as the observed differences 
are usually small relative to the normal scattering 
amplitudes and are subject to systematic errors resulting 
from differential absorption effects and crystal decom- 
position. Accurate high-resolution phasing is dependent 
on the accurate refinement of global anomalous 
scatterer positional parameters. An effective treatment 
of random and systematic errors is crucial for successful 
extraction of phases from incomplete data with weak 
signals and low redundancy. These problems are 
especially evident when native transition metal cofac- 
tors of a protein are exploited as anomalous scatterers. 
Protein metal clusters, commonly composed of first- or 
second-row transition metals (Fe, Ni, Mo), have 
accessible K-absorption edges that involve a relatively 
small number of electrons and, thus, their anomalous 
scattering only marginally affects the normal scattering 
intensities. Such cofactor assemblies are often asym- 
metric, composed of multiple atom types, and ligated by 
sulfides, which display small but potentially significant 
anomalous scattering at wavelengths that excite the 
metal K-electronic transitions. These factors compli- 
cated a multiwavelength anomalous diffraction (MAD) 
experiment on the 60kDa E. coli sulfite reductase 
hemoprotein (SiRHP); the structure of which was 
eventually determined by a combination of MAD and 
multiple isomorphous replacement (MIR) (Crane, 
Bellamy & Getzoff, 1997; Crane, Siegel & Getzoff, 
1995). 

This MAD experiment endeavoured to determine 
structure-factor phases from the anomalous scattering of 
five native Fe atoms contained in SiRHP's cofactors: 
one ferric siroheme (tetrahydroporphyrin of the iso- 
bacteriochlorin class) covalently linked to one FeaS,] ~ 
cluster by a bridging cysteine thiolate. Diffraction data 
collected on beamline 1-5AD of the Stanford Synchro- 
tron Radiation Laboratory (SSRL) in 1992 were 
measured at three wavelengths: one at the Fe K- 
absorption edge to accentuate ~ f '  [A c = 1.7412,~, 
(7120.4eV)], one at the Fe K-absorption peak to 
accentuate Af" [A B = 1.7374A, (7135.9eV)], and one 
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at a remote wavelength [A a = 1.5418 A (8041.1 eV)] to 
provide large dispersive differences relative to observa- 
tions taken at A s and A c. The low redundancy, lack of 
completeness and discrepancies among redundant 
measurements of amplitudes made phase determination 
from the SiRHP MAD diffraction data a considerable 
challenge with the methods available at the time of the 
experiment (Crane et al., 1997). Previous MAD 
experiments involving iron-sulfur containing proteins 
have been primarily successful at extracting low- 
resolution phases. For ferredoxin, MAD phases were 
determined to 5.0,~ resolution (Murthy, Hendrickson, 
Orme-Johnson, Merritt & Phizackerley, 1988), while 
for 5-phosphoribosyl-l-pyrophosphate (PRPP) amido- 
transferase, MAD phases of resolution beyond 5.5k, 
had to be improved by non-crystallographic symmetry 
averaging (Smith et al., 1994). 

The development of the program MADPHSREF was 
motivated by the desire to refine accurately anomalous 
scatterer parameters and improve phase determination 
from the limited SiRHP MAD data. MADPHSREF 
refines an anomalous scattering model directly against 
Bijvoet and dispersive differences while making maxi- 
mum likelihood estimates of errors, applying stereo- 
chemical restraints, taking into account more than one 
type of anomalous scatterer, probabilistically rejecting 
outlying observations, and partly compensating for 
inherent correlations between lack-of-closure expres- 
sions. Assuming fixed normal scattering phases from 
the refined SiRHP structure, this refinement method 
also allowed subtle asymmetries in the SiRHP Fe4S 4 
cluster to be characterized using the relatively weak 
MAD data. Anomalous dispersion effects are indepen- 
dent of the protein's normal scattering atoms, enabling 
parameters associated with the anomalous scatterers to 
be refined independently of all other parameters. 
Hence, the refinement of the anomalous model is 
greatly overdetermined and the least-squares normal 
matrix, which is much smaller than the corresponding 
matrix for normal scattering, can be easily inverted to 
obtain estimated errors. Given well measured data, tb_is 
increased overdetermination should lead to more 
accurate protein metal-center geometries than would 
be obtained by a conventional normal scattering 
refinement. 

Limitations of refining the perturbative scattering 
model with non-linear least-squares, where the non- 
perturbative structure-factor phases for normal protein 
scattering (~'e's) are fixed and iteratively updated, are 
less severe for a MAD experiment compared with an 
MIR experiment. Non-linear least-squares refinement 
of heavy-atom parameters has long been applied to 
isomorphous phasing (Dickerson, Kendrew & Strand- 
berg, 1991). In early applications to MIR, global 
heavy-atom parameters on which all structure factors 
depend (e.g. heavy-atom positions, occupancies and 
thermal factors) were refined, while parameters local to 

a given structure factor (e.g. ~e) were held constant 
and then re-evaluated between refinement cycles. 
Because the protein phases are implicit functions of 
sets of global heavy-atom parameters for each deriva- 
tives, this type of refinement can become considerably 
biased when fixed phases attempt to reinforce the 
heavy-atom scattering model that has defined them. For 
MIR least-squares refinement, ignoring the implicit 
interdependence of local and global parameters leads to 
a block-diagonal normal refinement matrix where the 
residuals of one derivative are not influenced by the 
parameters of another, even though all derivatives are 
mutually dependent on the protein phase. One strong 
derivative, separated from the influence of the others, 
can severely bias the refinement and limit convergence 
(Blow & Matthews, 1977). Many workers have 
explored strategies to overcome these limitations 
(Dodson, 1976; Sygusch, 1977; Bricogne, 1984; 
Terwilliger & Eisenberg, 1987; Otwinowski, 1991), 
with a complete maximum likelihood refinement being 
the most rigorous (Bricogne, 1991). In contrast, a 
MAD experiment based on native anomalous scatterers 
involves only a single set of global parameters that all 
Bijvoet and dispersive difference depend upon (i.e. the 
positions, thermal factors, and occupancies of the 
anomalous scatterers). Hence, ignoring the implicit 
dependence of the protein phase on the global 
parameters of the perturbative scattering model is a 
reasonable approximation, especially if the starting 
atomic coordinates are close to their true values. 
However, this does introduce correlated errors among 
the residuals that arise from mutual dependence of like 
observations on the same anomalous scattering model, 
the same normal scattering model, and systematic 
measurement error. Compensation for these inherent 
correlations can considerably aid the stability and 
accuracy of refinement. 

The absolute errors contained within a phase set 
determined from a specific experiment (such as MAD or 
MIR) may not be accurately reflected by the estimated 
figures of merit (FOM) for individual reflections, even 
though the relative error estimates within a resolution 
range of one specific phase set are reasonable. An 
independent criterion for the assessment of relative 
weighting schemes would be beneficial when combining 
phases from different sources. Proteins with similar 
solvent content have characteristic electron-density 
distributions within a specified range of resolution 
(Zhang & Main, 1990). For SiRHP, appropriate 
weighting between the MAD and MIR phases was 
determined by comparing electron-density histograms 
calculated from the MAD/MIR combined phases to 
electron-density histograms of known crystal structures 
with similar solvent content. Taken together, the 
phasing strategies and weighting schemes presented 
here and implemented in the program MADPHSREF 
resulted in a considerably improved, readily 
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interpretable experimental electron-density map for 
SiRHP. 

2. Methodology 

2.1. An exact expression for anomalous scattering from 
one atom type 

The fundamental scattering equation for one type of 
anomalous scatterer can be expressed in a form that is 
linear in wavelength-independent terms and can be 
solved for these parameters by a least-squares 
procedure (Hendrickson, 1991; Hendrickson, Smith, 
Phizackerley & Merritt, 1988). 

]F+(A)[ 2 = I°FTI 2 + a(A)l°FAI 2 + b(A)l°Frll°FA[ 

× cos(°~r - °  ~A) + c(A)I°FTII°FAI 

× s in (° : r  --° ~A) (1) 

OF T = I°erlexp(i~r)  (2) 

°FA = I°eAlexp(i~A), (3) 

where for the wavelength-dependent terms, 

a(A) = [(f,)2 + (f,,)2]/(fo)2 (4) 

b(A) : 2 ( f ' / f  °) (5) 

c(A) = 2 ( f " / f ° ) .  (6) 

°F r represents the total scattering vector from all 
normal scattering in the unit cell, °F a represents the 
normal scattering vector from all atoms that scatter 
anomalously, f °  is the normal atomic scattering factor 
for the anomalously scattering atoms, and f '  and f "  are 
orthogonal components of the atomic anomalous- 
scattering factor. This approach, implemented in the 
program MADLSQ (Hendrickson et al., 1988), has 
proven very effective when there is one dominant type 
of anomalous scatterer and a system of (1) is sufficiently 
overdetermined for the four wavelength-independent 
parameters [[°Fr[, [OFAI, cos(O~r _o ~OA) ' and 
s i n ( ° ~ r - °  qaA)] by at least six or more individual 
observations per phase (Wu, Lustbader, Lin, Canfield 
& Hendrickson, 1994; Hubbard, Wei, Ellis & 
Hendrickson, 1994; Shapiro et al., 1995). However, 
when the signal-to-noise ratio is weak and the number of 
independent observations per phase is _< 4, the least- 
squares treatment can be unstable and produce aberrant 
parameter estimates (Crane et al., 1997). 

2.2. Anomalous scattering expressed in separate terms 
for Bijvoet and dispersive differences 

Another strategy for extracting normal-scattering 
phases from anomalous-scattering effects derives from 
the induced amplitude differences between Bijvoet pairs 
of a given reflection at a given wavelength, 

and the dispersive amplitude difference between mea- 
surements of a given reflection collected at two 
wavelengths, 

z11F(,X0) I = ]F(/~i)l- IF(Aj)], (8) 

where, 

IF(/~,)  I ---~ [ I F + ( / ~ / ) l - ~ - I F - ( A ; ) l ] / 2 .  ( 9 )  

As noted by Terwilliger (Terwilliger, 1994), errors in 
AIF(Aij)I are unlikely to be correlated with errors in 
~IF±(Ai)I because the size of the difference between 
Bijvoet pairs at a given wavelength is uncorrelated to 
the size of their average. 

Referring to Fig. 1 (a) and assuming that the phase for 
the normal scattering vector (protein phase ~e) is 
constant for °F r, IF(A/)[ and IF(,Xj)I, 

IF(Aj)I 2 = IF(Ai)I 2 + IAFA(Aij)I 2 
- -  i 

- 2 1 F ( A i ) l l z X F ' A ( A i j ) l c o s ( : e -  ~o), (10) 

or, 

IZXF; (,X,j)l 2 
zXIF (,X0)l = -I~(+X/)l + I~(,Xj)l 

+21F(Ai)llAF'a(+X~J)lcos(:e _ ,/:0), (11) 
IF(:~,)l + IF(~,)l 

where */:D is the phase for the dispersive component of 
the total resonance scattering vector from all atom 
types, and [AF~(A0.)I is its magnitude. If we assume 
that N1/2[z:~f'(Aij)] << Np/2(j~°), where./;° is the average 
normal scattering factor for Np atoms in the unit cell, 
and N A is the number of anomalously scattering atoms, 
then IAF~(A/j)[ will be small com__pared with _IF(AJ)] and 
~_t' will not vary_ much between [F(Ai) I and ]F(Aj)I; i.e. 
IF(A,)l and IF(Aj)l will be approximately equal. (11) 
then reduces to, 

zXlF(A0)I-~ IAFA(A,j)I cos(~'p - */:o), (12) 

or, 

where, 

A o = IzaF~(A0)l cos(,/:z, ) (14) 

BD = IAF~(A~j)L s in(%).  (15) 

Terms for the anomalous differences between Bijvoet 
pairs can be derived from the relationship shown in Fig. 
l(b), assuming qo,, constant for °F r, F+(Ai) and F-(Ai),  

]F+(A,)] 2 - ]F(A,)[2 = [FA'(A/)I 2 -  2]F(A,)IIF~,'(A,)] 

× cos[Tr - (~b A - ~p)], (16) 

AIF(A0) [ ~ (ADCOS: P + BD sin :p ) ,  (13) 

AIF+(Ai)h = LF+(&)I-  IF-(A/)I, (7) and, 
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IF_(A,)I  2 I ~ (A , ) I 2  ,, 2 F" - = I G ( A , ) I  - 2 1 F ( A , ) I I  A ( A , ) I  

x cos(~Op- z/;,4 ). (17) 

Combining (16) and (17) gives, 

- -  F "  - IF+(A,)I 2 Ir-(A,)l 2-- 41F(,X,)II a(Ai)lcos(~p l/)A) 
(18) 

where IGI and ~a are the amplitude and phase of the 
anomalous component of the total resonance scattering 

F" vector from all atom types. Since I a(A,)l is usually 
small compared with I F(,X~)I (18) reduces (Hendrickson 
& Teeter, 1981) to, 

AIF+(Ai)I ~_ 2IFA'(Ai)I cos(cpp -- ~bA), (19) 

Dispersive terms 

a F'A(Xij) 
\\x \ I 

°FAL.~OFT ~" 

9~ 
(a) 

Bijvoet terms 

F*(~i)/ F"A(;Li) 

m 

(b) 
Fig. 1. Argand diagrams depicting the relationships between the 

normal and anomalous scattering vectors of a structure factor. (a) 
Relation of the dispersive difference between F(Ai) and F(Aj), 
[AF,~(A0) ] to the normal-scattering structure factors °F r (all normal 
scattering) and °F a (normal scattering from the atoms that also 
scatter anomalously). V'D is the phase of AF,~(Aii). (10) is derived 
from the law of cosines applied to the triangle with sides F(A/), 
F(Ai), and Z~,~(Aij)._The normal scattering protein phase ~e is 
assumed the same for F(Ai), F(Aj) and °F r in the derivation of (12). 
(b) Relation of the Bijvoet difference between F+(Ai) and F ( A i )  
[F~'(Ai)] to the normal-scattering structure factors °F r and °F A. (16) 
and (17) are derived from the law of cosines applied to the triangles 
with sides F+(Ai), F(Ai) , and AF~'(Ai) (at left) and sides F-(Ai), 
F(Ai), and A/;A'(Ai) (at right). Note that with more than one type of 
anomalous scatterer G~, the phase of F~'(A0), need not be 
perpendicular to the phase of °F a. The normal scattering protein 
phase ~e is assumed the same for F+(Ai), F (Ai) and F(Ai) in the 
derivation of (19). 

o r ,  

AI F± (Ai) I ~_ 2(A A cos ~p + B A sin ~p), (20) 

where, 

A A : IFA'(A~)I COS(~A) (21) 

n A - - t F ] ' ( A i ) l s i n ( ~ / J a ) .  (22)  

2.3. Non-linear least-squares refinement, a likelihood 
approximation for phase probability distributions and 
the inherent correlation of errors 

The calculated Bijvoet and dispersive differences for 
a given reflection depend on the global parameters of 
each anomalous scatterer, the local parameter of normal 
scattering phase, and the local scale and thermal factors 
applicable to the section of reciprocal space where and 
when the reflection is measured. 

AIF± (A,)Ica,c : f[rq,Jq'(Ai), Bq, Occq, Bovz, Sc l, ~pp] 

=./'(ca), (23) 
- -  , !  

AIF(A~/) Ic.,c =f[rq, Ajq (A0.), Bq, Occq, Bov 1, Sc,, ~p] 

=./'(co), (24) 

where the set of parameters CaD contains: the coordi- 
nates of the anomalously scattering atom q, rq; its 
difference anomalous scattering-factor components for 
A i and Aj, Afq(Aij ) and fq'(Ai); its thermal factors and 
occupancy, Bq and Occq; the overall scale, Sc l, and 
thermal factor, Bov t, for local scaling group i; and the 
normal scattering protein phase, 9~P. We can define the 
error functions, 

G(.x,) = AIV±(:~,)lobs- AIV±(:~,)f.,c (25) 

Ao(Aij ) = AlF(Aij)lob S -- AlF(Aij)lcalc. (26) 

The likelihood of our anomalous scattering model 
being correct given the observed data is then given by 
Bayes rule (Zehna, 1970), 

A(CADIAA, AD) = I-I Ph( AAle AD)" Ph( ADIg AI))" P°h(g AD), 
h 

(27) 

where h represents an individual reflection, 
Ph(AA]eAD) and Ph(ADleAD) are the probability of 
observing A a o r  AD,  given the parameter set gAD, and 
P~h(eAD) is an a priori distribution for CAD. P~h(eaD) 
can incorporate the expected distribution of the 
difference anomalous scattering vectors [which should 
conform to Wilson statistics (Wilson, 1949)], or 
information on the relative positions of the anom- 
alously scattering atoms (which can alternatively be 
applied as stereochemical restraints during refine- 
ment). 

To compensate for correlations between the residual 
errors of pairs of Bijvoet differences and between the 
residual errors of pairs of dispersive differences we 
assume multivariate Gaussian error distributions. Error 
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vectors for the anomalous and dispersive terms can be 
defined as, 

A A = {AA()ki),AA(/~j),AA(,~k),... } (28) 

A D = {AD(,~ij),AD(,~ik),AD(/~jk),... }. (29) 

Then, 

Ph(AAICA) (X e x p [ - l / 2 ( A ~ .  VA ~. AA)], 

and, 

(30) 

Ph(An[eD) cx e x p [ - l / 2 ( A ~ .  Vn ' .  AI)) ], (31) 

where V A and V n are the covariance matrices 
for the Bijvoet and dispersive error functions, respec- 
tively. 

For a MAD experiment performed at three wave- 
lengths, 

Ell El2 E13 ) 
V A : • E22 E23 , 

E33 

where the terms along the diagonal represent 
variances for AA(Ai),AA(Aj),AA(Ak), averaged over 
all reflections in a selected bin of resolution, while the 
off-diagonal terms represent covariances between 
residuals calculated from Bijvoet differences measured 
at different wavelengths (and likewise for the 
dispersive terms). 

The total probability distribution for the phase of a 
given reflection (Ph r) is then, 

Ph r = Ph(AAI~AD)" Ph(ADICAD)- P~(CAD ). (32) 

By integrating over all values of phase we can determine 
centroid values for phase, 

(¢p) J)~ ~ePrdWe 
= f+ppyd~ p , (33) 

and for the figure of merit, 

FOM = "f+P exp(i~p)P~d~p . (34) 

Maximizing the likelihood function (27) is equivalent 
to minimizing its negative logarithm, 

1/2[A~. VA 1. AA] + ~ 1/2[A~. VD 1" AD] (35) 
h h 

Although ~p must be fixed for each refinement cycle, 
the propagation of errors resulting from an invariant ~t, 
can be limited by averaging the covariance matrix over 
all values of phase instead of simply evaluating errors at 
the centroid phase, 

(E,j) f ;  E,;P~d~p 
= Lp P~d99P " (36) 

This is effectively a maximum-likelihood estimate 

of the error matrix over the variable of phase. 
Maximum-likelihood estimates of error variances have 
been shown to provide much more accurate error 
estimates for MIR refinement (Terwilliger & Eisenberg, 
1987; Otwinowski, 1991). 

Non-linear least-squares refinement of the anom- 
alous scattering model can be applied to minimizing 
(35) with intermittent recalculation of protein phases 
based on updated refined parameters and error 
estimates. Under first-order approximations, where 
the second-order partial derivatives of the normal 
matrix are approximated by products of first-order 
derivatives, the correlation of errors among related 
anomalous and dispersive differences introduces cross- 
over terms to the summed normal matrix elements of 
the type, 

,,,. { OAlF±(A')lcalc0G } {  Oc,, } 0ALE+ (AJ) GI~ 

{ 0AIF±(Aj)Gtc "[~ 0AIF±(A')I~I~ } (37) 
+ &.  J I  &,, 

where u and v denote parameters in the set of CAD. (13) 
and (20) separate ~p from the global parameters, 
allowing first-order derivatives of the global parameters 
to be readily calculated, 

OAlg(Aij)lcalc OAD O B  D . 
OE u - -  OC u COS ~ p  + --OC u sin ~p, (38) 

and 

0AlF±(A')[¢alc = 20AA 20BA 
0G -~Gcos~p + ~-Gsin~p. (39) 

During refinement, individual reflections are 
weighted by their observed measurement error (a) 
and the FOM calculated in the previous cycle. 
Geometrical restraints, representing prior structural 
knowledge, can be placed on any metal clusters 
(e.g. the distance restraints imposed by an iron- 
sulfur cluster cubane). This is equivalent to 
providing an a priori distribution P°(CAD) on the 
scatterer positions. Refining separate overall scale 
and overall thermal parameters for wedges of 
diffraction data collected on different crystals, over 
different fractions of reciprocal space, or at different 
times can help reduce systematic experimental error. 
To cast MAD-derived probability distributions (Ph r) 
into Hendrickson-Lattman (ABCD) coefficients 
(Hendrickson & Lattman, 1970) for combination 
with other MAD phase distributions from sym- 
metry-related reflections or for combination with 
phasing information from other sources (such as 
MIR), the ABCD exponential terms are integrated 
over P~, 
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A = f (40) 
,Pc 

B =  f (41) 

C =  f (42) 
~p 

D =  f (43) 
~Pp 

For the first cycle of phase calculation only, the 
covariance matrix V is estimated by choosing reflec- 
tions with large anomalous and dispersive differences 
(between 2 and 4a) and assuming ~a perpendicular to 
~,p and ~o colinear with ~e. The covariance matrix is 
estimated separately for centric reflections because 
centric reflections, owing to their restricted phases, 
are expected to have variances twice as large as would 
be found for acentric reflections (Terwilliger & 
Eisenberg, 1987). 

cos ~(P~')d~e 

sin ~ (p r )d~p  

cos 2~(Phr)d~e 

sin 2~(P~')d~p e . 

2.4. The rejection of aberrant observations 

Because the anomalous scattering signal-to-noise 
ratio is often small, wide variances result for the 
distribution of differences between observed and 
calculated values. Many observed differences can 
even have the wrong sign. When present in large 
numbers, these aberrant measurements severely limit 
the ability of the refinement to converge. Providing 
that the starting parameter model is close to the 
correct one, discrepant observations can be identified 
for rejection by comparing observed values with 
those calculated from the current model. We 
implemented a probabilistic rejection protocol to 
remove inconsistent observations without unduly 
biasing the refinement. An observed difference (A A 
or Ao) is rejected if, 

(A~/2E~)], (44) Ran > exp[-Ze  • ~ 

o r  

Ran >_ exp [ -Ze .  (AD/2ED) ], (45) 

where Ran is a randomly generated number between 0 
and 1, E is the current estimate of the root-mean- 
square error for a Bijvoet (A) or dispersive (D) 
difference, and Ze is an adjustable parameter that sets 
the rejection level. Thus, an observation that produces 
a large error residual compared to the present model 
and current E-value estimate will have a greater 
probability of being rejected on the current cycle. 
Reflections to be rejected are reselected at the 
beginning of each refinement cycle and all observa- 
tions are always allowed to contribute to the phase 
distributions. In this way, observations that do not 
agree with the current model still have the opportunity 
to influence the refinement at a later stage. These 
selection criteria will reduce bias of the starting model 

but also have the potential to induce oscillatory 
behavior and prevent convergence. 

2.5. Full-matrix least-squares refinement of anomalous 
scatterer positions 

The refinement of the positions of anomalously 
scattering atoms against anomalous and dispersive 
differences can also be useful for assessing asymme- 
tries in metal clusters. In this case, ~ ,  is held fixed at 
a value calculated from a refined structure, and full- 
matrix least-squares refinement can generate the 
covariance matrix containing estimated standard 
deviations in atomic parameters. Observations are 
scaled to the calculated model amplitudes by relative 
Wilson scaling and weighted by their measurement cr 
and Sim weight on ~e (W) (Sim, 1959). 

W = l,(X)/lo(X) (46) 

x = 21FobsllFcaJcl (47) 
(IFobsl 2 -[F.,cl2) ' 

where I0 and /1 a re  zero and first order Bessel 
functions, respectively, and the denominator of X is 
fit to a resolution-dependent second-degree poly- 
nomial. 

2.6. Weighting MAD and MIR phase distributions by 
histogram matching 

MAD-derived phase probability distributions can be 
combined with phase probability distributions from 
other sources by summing Hendrickson-Lattman 
coefficients that represent the respective distributions. 
Comparisons of electron-density histograms calculated 
from the combined experimental phase sets to 
histograms derived from previously determined pro- 
tein structures is an effective way to weight the 
coefficients. A histogram of an electron-density map is 
the probability distribution of the electron density at 
the grid points of the map. The density frequency in 
bin z of map M is defined as, 

nz (48) 
fzm -- Ntot ' 

where Nto t is the total number of grid points and n z is 
the number of grid points that have an electron 
density (p) within the range for bin z. Density values 
are partitioned into equally spaced bins to create the 
histogram, 

- - W "  O" M W "  O" M - - W "  gYM W • O" M - - f - - + ~ ( z -  1) _< p ~. ~ + ~ ( z ) ,  

(49) 

where cr M is the r.m.s, value of electron-density in map 
M and w is the total width of the electron-density distri- 
bution in terms of a M. All values less than ( - w .  CrM/2) 
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Table 1. Data and refinement statistics for the refined SiRHP model 

The SiRHP model was refined with both X-PLOR and TNT against 1.6 A resolution data (no a cutoff applied) collected at 1.08 h, on SSRL 
beamline 7-1. R-rest was calculated against a test data set containing 10% of the reflections removed at random to approximate Rvree (Briinger, 
1993). To avoid bias in the RTest calculation because the test reflections were not removed before the model was completed, the coordinates were 
given normally distributed errors with an r.m.s, deviation of 0.22A before carrying out positional and thermal factor refinement until 
convergence. Adding errors to the coordinates increased the overall R factor in X-PLOR from 19.1% for the converged model to 26% for the 
partly randomized model. Interestingly, even if the coordinates were not randomized, RTest relaxed to the same value against the released data. In 
keeping with the lower TNT R factor, stereochemical restraints were not as strict in the TNT refinement as in the X-PLOR refinement, although 
the r.m.s, bond and angle deviations still indicate good geometry. The bulk solvent correction in TNT allows inclusion and modeling of all low- 
resolution data and this also contributes to the lower R factor. The R factor calculated in X-PLOR for the TNT-refined model is 17.5% between 
10.0 and 1.6A resolution. In both refinements, angle and bond restraints on the siroheme porphyrin ring and carboxylate side chains were the 
only stereochemical restraints applied to the cofactors. Rmerg e -- ~'-~h ~-'~i I lm - (lh)[/~'-~h ~-'~i lira I" 

Diffraction data 
Resolution (A) 0c-3.57 3.57-2.53 2.53-2.06 2.06-1.79 1.79-1.60 oc-1.60 
Observations (No.) 32748 61579 78617 91939 100080 364963 
Unique reflections (No.) 5755 10338 13084 15257 16827 61261 
Completeness (%) 96.4 98.6 98.0 97.2 93.3 97.0 
Rmerg e (%) 8.5 8.5 10.0 14.1 24.1 9.9 

Refined model X-PLOR TNT 
Total non-H scatterers 4186 4186 
Water molecules 486 486 
R.m.s.d. bond length (,~,) 0.010 0.017 
R.m.s.d. bond angle (°) 1.6 2.5 
aa estimated r.m.s, coordinate error 0.18 0.17 

X-PLOR 
Resolution shells (,~,) 10.0-2.50 2.50-2.00 2.00-1.76 1.76-1.60 10.0-1.60 
Overall completeness (%) 98.1 98.0 97.0 93.5 96.7 
R factor (%) 16.6 19.0 22.5 27.8 19.1 
Rv~ (%) 20.5 20.9 23.9 27.6 21.8 

TNT 
Resolution shells (,~) ~ - 2 . 5 0  2.50-2.00 2.00-1.76 1.76-1.60 cc-1.60 
R factor (%) 14.0 18.0 22.0 26.0 16.9 
RTest (%) 21.0 22.0 26.0 28.0 22.4 

fall in b i n : =  1 and all values greater than (-w.crM/2)+ 
w- aM-nbin fall into bin z = nbin. These range limits are 
imposed on defining the histogram so that especially 
large or small electron-density values in a given map 
(resulting from, say, a metal atom) will not offset the 
histogram relative to maps derived from another 
protein. The relatedness of two histograms (M and N) 
can then be evaluated by a correlation function (Rn), 

Ez f zMf  N - E z f z  u E z f  N 
R n = M 2 )2_ U 2 1/2" )l[E  z 

(50) 

A systematic search of experimental phase weights is 
then used to optimize R u between a combined experi- 
mental map and a reference electron-density map 
calculated from a solved protein structure with similar 
solvent content. 

3. Results and discussion 

3.1. Standard for assessment of  improved phasing - the 
refined SiRHP model 

The methodology presented above, as imple- 
mented in the program MADPHSREF, ultimately 

resulted in a MAD-derived experimental electron- 
density map for SiRHP of higher quality than the 
MAD/MIR map originally used to determine the 
structure. In order to critically test these new 
procedures and guide the development of MADPHS- 
REF, the refined SiRHP structure (Crane et al., 
1995) provided the necessary control. The SiRHP 
model has excellent stereochemistry and low R 
factors when refined both originally with X-PLOR 
(Brfinger, Kuriyan & Karplus, 1987) and later with 
TNT (Tron~d, Ten Eyck & Matthews, 1987) 
against 1.6A resolution data collected at 1.08A on 
SSRL beamline 7-1 (Table 1). Prior to refinement 
with TNT, the X-PLOR converged coordinates were 
given Gaussian-distributed random errors that pro- 
duced a root-mean-square (r.m.s.) deviation of 
0.22,~ for all coordinates - a value slightly larger 
than the r.m.s, error estimated from a c~ a plot 
(Read, 1988). All experimental phase errors are 
calculated relative to structure factors derived from 
the X-PLOR-refined structure. The effectiveness of 
Fe-atom positional refinement against anomalous 
data was assessed by comparing the converged Fe- 
atom coordinates to the Fe-atom coordinates of the 
X-PLOR-refined structure, which are assumed to be 
'true'. 
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Table 2. Anomalous difference scattering vector amplitudes refined against simulated and experimental data sets 

For the generation of simulated data sets, anomalous-difference scattering amplitudes for iron and sulfur were taken from the International 
Tables of X-ray Crystallography' Vol. IV (Ibers & Hamilton, 1974). and assigned as follows: f"(AA) = f "  at Cu Kc~ (1.5418 ,/k), f"(As) = f "  at 
FeK (1.74A, an approximation for the K-edge value of 1.7412A). Af'(AAs) = Zlf'(A,w) =f'(A15418) -f'(Ai.74). Refinement of difference 
scattering vector amplitudes against a simulated data set with no errors and fixed atomic positions (error-free simulation) reproduced the 
scattering factors used in generating the simulated data set (the starting values are in parentheses). SiRHP normal scattering vectors and the 
assigned anomalous-scattering vectors were combined to simulate 61 017 unique Bijvoet and dispersive differences. Refinement was run over the 
resolution range of 8.6-2.5 A for 12 cycles to optimize the difference scattering vector amplitudes. Gaussian-distributed random errors were 
applied to the calculated structure-factor amplitudes in resolution shells of oc-5.0, 5.0-3.5, 3.5-3.0, 3.0-2.7, 2.7-2.5,4, to give r.m.s.(ZlF/F) 
of 2.0, 2.5, 3.4, 5.2 and 8.0%, respectively (simulation with Gaussian errors). The magnitudes o f f '  and f "  used to calculate the starting 
difference vectors were obtained by X-ray absorption spectroscopy with the assumptions of isotropic anomalous scattering and anomalous 
scattering from iron alone (Crane et al., 1997). To generate the experimental difference vector magnitudes, relative Wilson scaling was used to 
put the MAD amplitudes on a quasi-absolute scale. Dispersive differences were taken only between reflections that had both Bijvoet pairs at each 
wavelength so that a reasonable estimate of [FI could be made {cz/XlF±(,Xi)l = [~rzalF+(Ai)12+c~AI F (Ai)12] ~/2, ~rAIT(A0)I = 
[~rAIF±(A,)I2+ ~rA[F±(Aj)[2]~/2}. In addition to iron spatial parameters, individual scale and thermal factors for nine crystal positions 
were refined simultaneously for 12 cycles using a rejection level of 0.8 for Ze to reject 8617/41 135 reflections on the last refinement cycle. 
Initial Fe-atom positions had an r.m.s, deviation of 0.66A from their final refined values in the 1.6,~ resolution SiRHP model, and S-atom 
positions were held at their true values. Atomic positions, scale and thermal factors were then fixed and scattering factors were refined for ten 
cycles. 

Assigned Error-free simulation Simulation with Gaussian errors SiRHP refined 
Fe S Fe S Fe S Fe S 

f"(AA) 3.09 0.557 3.35 (4.0) 0.56 (0.4) 2.04 (4.0) 0.85 (0.4) 3.48 (3.14) 0.35 (0.0) 
f"(As) 4.98 0.847 5.30 (4.0) 0.83 (0.4) 6.13 (4.0) 0.48 (0.4) 4.40 (4.73) 0.37 (0.0) 
Af'(AAs ) 4.72 -0.510 4.56 (7.0) -0.01 (0.1) 4.30 (7.0) -0 .04 (0.1) 5.55 (4.72) -0 .09 (0.0) 
Af'(AAc ) 7.19 -0.510 6.95 (7.0) 0.00 (0.1) 7.75 (7.0) -0 .06 (0.1) 7.69 (7.08) -0.01 (0.0) 

3.2. Assessment of the refinement procedure and its 
ability to incorporate multiple types of anomalous 
scatterers 

Simulated data sets were generated to test if the 
MAD phase-refinement procedure, as implemented in 
MADPHSREF and presented above, could reproduce 
accurate phases, successfully refine native Fe-atom 
positions and detect S-atom anomalous scattering from 
native SiRHP. In addition to five Fe atoms, SiRHP 
has 20 ordered S atoms in the final refined structure 
(four-cluster inorganic S atoms, six cysteine thiolates 
and ten methionines) that each make a small 
contribution to the anomalous scattering model at 
the FeK and CuKc~ energies. For the simulated and 
experimental data sets, two Bijvoet differences 
[zaIF±(AA)I and zalF±(AB)I] and two dispersive 
differences [AIF(AAS)[ and A[F(Anc)[ ] were generated 
from the refined SiRHP coordinates and a priori 
anomalous scattering vectors (Table 2). The remain- 
ing two possible difference terms that have the 
smallest intrinsic magnitudes, A [F ± (Ac) [ and 
AIF(Asc)[, did not improve phase estimates for the 
experimental data when included, and therefore were 
ignored for most calculations. Refinement against real 
and simulated data was carried out by estimating 
phases, root-mean-square (r.m.s.) errors, correlation 
coefficients and figures-of-merit (FOM's) between 
cycles of optimizing individual atomic parameters 
(positional and thermal), local scale and local thermal 
parameters, and anomalous difference vector magni- 
tudes. Local overall scale and thermal parameters 
were optimized for separate wedges of diffraction 

data containing reflections collected closely together 
in time and reciprocal space. 

The magnitudes of the anomalous difference scatter- 
ing vectors [ f "  (,~i), Af' (/~ij)] reproduced values derived 
from experimental measurements of f"  and Af' for both 
iron and sulfur when refined against error-free simu- 
lated data, even if the initial scattering vector magni- 
tudes did not distinguish the real relative magnitudes 
(Table 2). In contrast, when resolution-dependent errors 
comparable to those found in the SiRHP experimental 
observations were added to the amplitudes, the relative 
magnitudes of the small sulfur vectors no longer refined 
correctly. Large errors in both the atomic anomalous 
difference scattering factors and the atomic positions 
prevent accurate refinement of both sets of parameters 
simultaneously. For example, if a simulated data set is 
generated where one of the iron-sulfur cluster Fe atoms 
is substituted by cobalt and the atoms are given a 0.7,4, 
r.m.s, positional error, the cobalt scattering factors will 
not refine accurately from initial values set for iron. 
However, if estimates of the atomic difference scatter- 
ing factors are known experimentally, then both 
scattering factors and atomic positions can be simulta- 
neously optimized. Even though SiRHP's isotropic f "  
and f '  values were determined using X-ray fluorescence 
measurements under the assumption of only anoma- 
lously scattering iron, the sulfur difference scattering 
factors, initially set to zero, refined to reasonable values 
and the starting iron values adjusted appropriately 
(Table 2). 

The loss of almost all phase and positional error after 
the refinement of incorrect Fe-atom positions (r.m.s. 
deviation = 0.66,~ from the 'true' coordinates) against 
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Table 3. Errors introduced by excluding sulfur 
anomalous scattering 

The anomalous-difference phase-refinement protocol was tested by 
refining an anomalous scattering model for SiRHP against error-free 
simulated data (see legend to Table 2) both when the model included 
(5Fe-20S) and excluded (5Fe) SiRHP native sulfur anomalous 
scattering. Inclusion of sulfur anomalous scattering resulted in 
significantly smaller, overall, amplitude-weighted, acentric phase 
errors ~ [ F l A i l  ~ IFI (w(A~) ..... ); smaller r.m.s, deviations in the 
converged Fe-atom positions from their 'true' values (AFe); and a 
higher electron-density map correlation coefficient (Re), compared to 

2 2 . 2  2 the refined structure. Rc = (PePr) - (Pe)(Pr)/[(tOe) - -  (De) ] ' [(fOr) - 
(pr)211,'2 where Pe is the electron density of the FOM-weighted 
experimental map, and p~ is the final 2E, - F~ electron density phased 
with the refined structure. Starting Fe-atom coordinates had an r.m.s. 
deviation of 0.66,~ from their 'true' values and the S-atom spatial 
parameters were not refined. For SiRHP map correlation calculations, 
experimental phases and FOM's are combined with amplitudes 
essentially unperturbed by anomalous scattering from a 1.6A 
resolution native SiRHP data set collected at a wavelength of 1.08 ~, 
(Crane et al., 1995). 

Error-free Simulation with 
simulation Gaussian errors SiRHP 

5Fe-20S 5Fe 5Fe-20S 5Fe 5Fe-20S 5Fe 

w(A~,) ..... (°) 7.2 12.5 47.8 48.6 59.0 59.0 
Re 0.946 0.917 0.536 0.531 0.458 0.458 
AFe (,~,) 0.021 0.043 0.079 0.129 0.275 0.279 

error-free simulated data demonstrates that although 
(12) and (19) contain approximations they are appro- 
priate target functions (Table 3). Even in the presence 
of substantial simulated errors the inclusion of sulfur 
anomalous scattering reduced phase errors and devia- 
tions from ideal iron geometry, and also increased the 
map correlation coefficient (R,.) calculated between an 
I°FT] × FOM experimental map and the 2F o - F,. map of 
the refined structure (Table 3). However, the errors in 
the SiRHP experimental data were large enough that 
sulfur anomalous scattering was barely significant and, 
therefore, it is reasonable to neglect the S atoms for 
refinement against this data. The phase errors deter- 
mined for the SiRHP experimental data are larger than 
those resulting from refinement against simulated data 
with Gaussian errors (Table 2), which implies that 
either errors on the real ]Fl's are larger than those 
simulated, or that the experimental errors are not 
Gaussian in nature. Given that the simulated data have 
r.m.s, errors on IF I of 5.2-8.0% in the highest 
resolution bins (legend to Table 2), and that the errors 
in the observed SiRHP data are higher than this, it 
seems remarkable that the relatively small SiRHP 
anomalous signals provide phase restraints sufficient 
for structure determination. 

3.3. Refinement of thermal parameters 

Anomalous scattering is less sensitive than normal 
scattering to attenuation with increased scattering angle 
because the electronic transitions involved occur from 
tightly bound orbitals that have much smaller radii than 

the valence orbitals that dominate normal scattering. 
Accordingly, the exponential terms used to model the 
attenuation of scattering intensity with increased angle 
in normal scattering factors are not included in the 
difference anomalous scattering factors (Afq and fq'). 
Intensity fall-off with increased scattering angle as a 
result of thermal disorder will also be less for 
anomalous scattering than for normal scattering because 
the convolution of the orbital expanse with the mean- 
square atomic displacement is generally smaller for 
electrons contributing to anomalous scattering than for 
electrons contributing to normal scattering (Helliwell, 
1992). Consequently, if the individual exponential 
thermal factors associated with each atom are fixed at 
the individual B values found from the normal scattering 
refinement, the thermal factors that model overall 
scattering attenuation with increased scattering angle 
for a local set of reflections refine to negative values. 
Because the relative motion of the atoms, reflected in 
the individual thermal parameters, are the same for 
anomalous and normal scattering, the local thermal 
parameters that apply to all reflections of a given 
orientation should account for (i) decreased sensitivity 
of the anomalous signal to increased resolution, (ii) 
increased diffraction decay resulting from crystal 
radiation damage for the MAD data relative to the 
native data, and (iii) measurement errors that likely 
increasingly over-represent large aberrant anomalous 
differences with higher resolution. Individual anom- 
alous thermal parameters for each atom refined stably 
only when bivariate normal distributions were used to 
compensate for the correlations between residual errors 
in the lack-of-closure expressions [(30) and (31)]. 
Without compensation for correlations, the individual 
thermal parameters became unrealistically large and the 
refinement diverged. In the anomalous refinement, local 
and individual thermal parameters could not be refined 
together; thus, local thermal, local occupancy and 
positional parameters were refined first followed by 
individual thermal and positional parameters. 

3.4. Refinement weights 

Weighting the individual observations by 
FOM×l / c r  2 (where cr is the measured observation 
error in terms of counting statistics and background, 
and FOM is calculated from the previous phasing 
cycle) resulted in better convergence and more 
accurate Fe-atom positions than weighting by 
1 / ( a 2 + E 2 ) ,  where E 2 is (Eli)  averaged over a 
range of reflections [see (36)]. Reflection partitions 
based on resolution, difference magnitude, and 
observation magnitude were attempted separately or 
in combination for averaging E 2 values. None of these 
strategies was as successful as the FOM weighting 
scheme. Because the normal scattering phase (~p) is 
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fixed in value during least-squares refinement, it is 
appropriate to weight the least-squares terms relative 
to each other by FOM, a factor that reflects the 
accuracy of ~op at the current iteration. Although the 
(Eii) values represent the width of the probability 
distribution for all parameters, their likelihood is only 
integrated over the parameter qot,, and not the complex 
plane of the anomalous difference structure factors. 
Thus, the (Eii) values include errors in parameters 
other than ~o e and, therefore, may not be as sensitive 
as FOM to the relative errors in ~j, from different 
reflections. Provided that there are reasonable esti- 
mates for the unaveraged parameters, weighting an 
individual term by a factor representative of that 
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Fig. 2. Sensitivity of refinement to outlier rejection. The effect of 
rejections selected by increasing values of Ze on the r.m.s. 
deviation of Fe-atom positions from ideality (AFe) and the map 
correlation coefficient (Re) at refinement convergence. Local scale, 
thermal parameters and Fe-atom positions were optimized over 
eight cycles of refinement against the experimental SiRHP data 
(41 135 total observations) without including S atoms in the model 
or applying any other rejection criterion (i .e. ,  ~ cutoffs or cutoffs 
on large differences). A minimum in AFe correlates to a maximum 
in R c when ,--20% of the observations were rejected. At each cycle, 
all observations were allowed to contribute to the phase distribu- 
tions, but the rejected reflections were excluded from refinement of 
the anomalous scattering model in that cycle. 

term's phase error, appears more effective than 
weighting by an overall closure error averaged over 
a large group of reflections. 

3.5. The rejection of outlying observations 

The probabilistic rejection of outlying measure- 
ments expressed by (44) and (45) was quite effective 
at mitigating the effects of bad measurements on 
refinement, while preventing the introduction of bias 
towards the starting model (Fig. 2). As the 
exponential multiplicative term that sets the rejection 
level (Ze) was increased from zero, the r.m.s. 
deviations in Fe-atom positions after eight refinement 
cycles decreased to 0.335A when 20% of the 
observations were rejected (8617/41 135 at 
Z e =  0.8). The map correlation coefficient (Rc), a 
reflection of the quality of experimental electron 
density (see legend to Table 3), is anticorrelated to 
AFe and reaches a peak value of 0.438 at Z e =  0.8 
after eight cycles. Refinements carried out with 
cutoffs applied to the observation o-'s and difference 
magnitudes to remove ,-,,20% of the observations 
[8478 out of 41 135 reflections being rejected if 
Z~A or D ~ 0 . 5 5  X O'A A or D or 5.0× r .m.s.(A A or D) 

Z~A or D] do not minimize as effectively 
(AFe=0 .393 ,h , ,  R,. =0 .429)  compared with the 
probabilistic selection procedure. Refinement against 
simulated data with Gaussian errors is also most 
successful when ~20% of the observations are 
excluded by the Ze term, indicating that even with 
normally distributed errors it is beneficial to remove 
the most aberrant observations. 

Probabilistic sampling, as opposed to applying 
fixed cutoffs, allows all observed differences to be 
compared to continually improving calculated differ- 
ences and error estimates. Since the residual errors 
are always compared to the current, most likely 
r.m.s, error estimates, more deviant observations 
will be tolerated when the anomalous scattering 
model is initially inaccurate. As the model begins 
to converge, the error estimates will start to reflect 
the true errors and the criteria for rejection will be 
more stringent. The random element of the prob- 
abilistic rejection method always allows observations 
that are not consistent with the current Fe-atom 
positions to still influence the refinement, and 
therefore reduces bias towards the current conforma- 
tion. At early stages of refinement, it is difficult to 
assess if lack of closure stems from errors in the 
observations or errors in the anomalous scattering 
model. Instead of rejecting all inconsistent observa- 
tions at the outset by some preset measure, the 
probabilistic approach considers both the likelihood 
of the model being correct and the likelihood of an 
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observation being consistent with that model at each 
progressive stage of refinement. 

3.6. Convergence of refinement and stereochemical 
restraints 

Refinement of an iron-only anomalous scattering 
model for SiRHP, having initial coordinates with an 
r.m.s, deviation of 0.655,~ from ideality, converges 
in approximately ten cycles of optimizing local scale, 
local thermal, and individual positional parameters 
followed by approximately ten cycles of optimizing 
individual positional, individual thermal and scatter- 
ing-factor parameters when the experimental data is 
used (Fig. 3). AFe is well correlated with A~ and 

anti-correlated with Re, demonstrating the importance 
of refining correct anomalous scatterer positions to 
calculating accurate phases. Stereochemical restraints 
on the interatomic Fe distances that force an 
idealized iron-sulfur cluster geometry decrease AFe 
on convergence, and this is also reflected in ,4~ and 
R c (Table 4). Incorporating prior structural informa- 
tion on the metal centers, even relatively inaccurate 
distance restraints, can aid convergence to the 
correct conformation, especially with noisy data. 
FOM generally tracks ,4~ and R C, but it is relatively 
insensitive to the addition of stereochemical 
restraints. The overall R factor between observed 
and calculated anomalous differences (Fig. 3) is a 
reasonable indicator for convergence, but its absolute 
value will always decrease with an increasing Ze (as 
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Fig. 3. Convergence of phase refinement and the effect of stereochemical restraints. Refinement statistics and parameters are monitored over 24 
cycles of refinement. In the first 12 cycles, phases, positional parameters, and overall scale and thermal factors were concomitantly refined, 
and then positional parameters and individual thermal factors were refined for an additional 12 cycles. The discontinuity between these two 
sets of refinements results from re-evaluation of the likelihood error estimates and normal scattering phases at the start of the second stage. 
Starting Fe-atom coordinates had an r.m.s, deviation of 0.66 A from their "true' positions and Ze was set to 0.8 for outlier reject!on. S atoms 
were not included in the model. Under stereochemical restraints (dotted line), all cluster Fe atoms were restrained to be 2.78 A from each 
other, an average value for an idealized Fe4S 4 cluster. The siroheme Fe atom was left unrestrained. Weights on the stereochemical terms were 
increased until 2.78,~, separations were achieved within the cluster .by the last cycles of refinement. R( sphe re )=  (~-~ 1,6AI + E I,%1)/ 
[ E  AIF±(Ai)lob~ + ~ AIF(A,j)I,,h~] over the resolution range 8.6-2.5 A. FOM = figure of merit [(35)]. AFe = r.m.s, deviation of Fe-atom 
positions from their ' true'  positions at the end of refinement, w(A~) = overall amplitude weighted phase error,  R~ = experimental map 
correlation to final 2Fo -F~  map calculated from 10.0-2.5 ,~ resolution (see the legend to Table 3). 



34 MAD PHASING A N D  REFINEMENT 

Table 4. More sophisticated error models and stereochemical restraints improved phase and scatterer refinement 
against anomalous differences 

Average phase errors ((A~)) and overall weighted phase errors w((A~) ..... ) measured in °, and map correlation coefficients (R,.), calculated at 
the end of phase refinement, improved with an increasingly more complex error model. Local thermal, scale and Fe-atom positional parameters 
were refined over ten cycles with Ze = 0.8. S atoms were not included in the anomalous-scattering model. Overall completeness of unique 
reflections phased to 2.5A is 70%. The ability of the estimated FOM to represent I cos(A~) I is much improved when maximum likelihood 
estimates of r.m.s, errors are taken by averaging over all values of phase (+ likelihood error estimates), as opposed to being calculated at the 
centroid phase of the previous iteration (anomalous difference phase refinement). Additionally, compensating for correlations between Bijvoet 
difference residuals and dispersive difference residuals (+ correlation corrections) further improved phases and error estimates, and resulted in 
lower r.m.s, deviations from ideal Fe-atom coordinates on convergence (AFe). Internal stereochemical restraints on the FeaS 4 cluster (+ 
stereochemical restraints) aid convergence to ideal Fe-atom positions. 

Anomalous difference + Likelihood + Correlation + Stereochemical 
phase refinement error estimates corrections restraints 

Resolution (,~) (A~) (I cos A~-FOMI) (A~) (I cos A~-FOMI) (A~) (I cos A~-FOMI) (A~) (I cos A~-FOM[) 

oo-6.0 45.7 0.15 43.7 0.10 43.6 0.09 43.4 0.07 
6.0-4.3 50.4 0.20 48.6 0.10 46.8 0.01 46.9 0.00 
4.3-3.5 67.9 0.35 66.5 0.10 64.8 -0.01 65.0 0.01 
3.5-3.0 71.9 0.40 68.8 0.10 67.5 0.01 67.4 0.01 
3.0-2.7 74.5 0.41 70,6 0.12 70.4 0.06 70.0 0.04 
2.7-2.5 75.0 0.41 72.7 0.09 71.5 0.00 71.2 0.01 
w(A~p) ...... 63.5 60.7 59.3 59.0 
R< 0.372 0.430 0.455 0.458 
AFe (,~) 0.464 0.415 0.345 0.279 

Table 5. Improved phase errors and phase error estimates from MADPHSREF alone, and from the combination of 
MAD phases with MIR phases by histogram matching 

The MADPHSREF procedure resulted in much better phase errors and more accurate weights than the MAD-derived phases used in the original 
SiRHP structure solution (MAD~omb), where wavelength-independent parameters were calculated from (1) and then lack-of-closure expressions 
were used to generate probability distributions (Crane et al., 1997). Overall completeness of unique reflections in the MADcomb data set phased 
to 2.5 A is 69%; however, only 51% of the unique reflections had at least four independent observations, the minimum number needed for direct 
phase determinations by MADLSQ. Compared with the original MADcomb/MIRAS-weighted phase set, superior phases and more realistic FOM 
weights were obtained when MADPHSREF-derived phases were combined with MIRAS phases by using a weighting scheme determined by 
histogram matching electron-density distributions (MADPHSREF/MIRASH). Completeness of phased reflections in both combined data sets was 
nearly 100%. 

MAD~omb MADPHSREF MADcomb/MIRAS MADPHSREF/MIRAS H 
Resolution (,~,) (Acp) (I cos Aqo-FOM[) (A~) (1 cos A~-FOMI) (A~) ([ cos A~-FOMI) (A~) (I cos A~-FOMI) 

cx~-6.0 48.4 0.22 43.4 0.07 42.9 0.20 40.3 0.24 
6.0-4.3 50.2 0.21 46.9 0.00 45.4 0.19 41.7 0.04 
4.3-3.5 71.1 0.34 65.0 0.01 64.4 0.34 59.5 0.01 
3.5-3.0 74.8 0.37 67.4 0.01 68.9 0.32 65.2 0.01 
3.0-2.7 78.6 0.36 70.0 0.04 77.4 0.39 73.3 0.12 
2.7-2.5 80.7 0.32 71.2 0.01 84.2 0.44 78.4 0.17 
w(AqO)ove r 65.6 59.8 62.9 58.0 
R c 0.340 0.443 0.430 0.486 
AFe (A) 0.655 0.279 0.655 0.279 

Ze rejects observations inconsistent with the given 
model), and hence this statistic does not always 
reflect the best rejection strategy. Both the FOM and 
the number of reflections level at approximately four 
cycles as the likelihood error estimates stabilize. 

3.7. Error estimates and phase refinement 

Phase determination directly from the observed 
anomalous differences simultaneously optimizes anom- 
alous scatterer positions and the phases derived from 
them. Compared with a least-squares treatment based 
on (1), which requires a fixed anomalous scatterer 
model (MADcomb, Table 5), anomalous difference 
phase refinement utilizes more observations (a phase- 

probability distribution can be defined from a single pair 
of intensity observations), refines Fe-atom positions 
with more accuracy, and considerably reduces phase 
errors (Table 5). The FOM-weighted I°Frl electron- 
density map calculated using the results from the 
difference refinement is generally less fragmented and 
has more regions of continuous 2o- density compared to 
the original MAD-phased map (Fig. 4). Previous 
attempts to define Fe-atom positions by refinement 
against I°FAI values, or against Bijvoet differences at 
one wavelength [using the approximation that 
[s in(~A- ~e)[ = 1 for all large differences] were 
unsuccessful (Crane et al., 1997). With the 
MADPHSREF procedure, incorporation of both Bijvoet 
and dispersive differences was necessary for stable 
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convergence with SiRHP experimental data. In addition 
to more accurate positional refinement and reduced 
phase errors, the difference refinement produced 
improved estimates of phase accuracy. Averaging 
error variances and covariances over all possible values 
of ~ ,  resulted in FOM's that better reflected the actual 
phase errors (Table 4). Accurate FOM's contributed to 
the generation of an improved experimental map by 
allowing the appropriate weighting of the Fourier terms 
(Fig. 4). 

3.8. Compensation for correlated errors 

Phase error was reduced, positional and thermal 
factor refinement was more stable, and phase weights 

were defined with greater accuracy when error correla- 
tions among Bijvoet terms and among dispersive terms 
were partially compensated for by employing bivariate 
normal distributions to represent the probability dis- 
tributions of the observed differences [see (30) and 
(31)]. During the refinement of an anomalous scattering 
model, correlations will always exist between residual 
errors for anomalous differences of the same type 
[either AIF+(A,)I or because all calculated 
anomalous differences for the same reflection will be 
affected by the same errors in both the anomalous 
scattering model and the normal scattering model (i.e. 
the protein phase error, fixed in value for each cycle of 
refinement). This is especially true where one type of 
anomalous scatter dominates and hence only a scale 
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Fig. 4. Improvement in experimental electron-density maps. Anomalous difference refinement and improved error treatment results in better 
MAD electron-density maps and ultimately a superior MAD/MIR phase-combined map. (a) Stereoview of MADcomb phased ]°Fri×FOM 
weighted, electron-density map (13.0-2.5 A resolution, purple I a contours, red 2a contours) showing an exposed loop between two/3-strands 
in the SiRHP structure (see also Table 5). The map is fragmented, does not have many continuous regions at 2a and does not conform well to 
the refined model (yellow C atoms, blue N atoms, red O atoms, water molecules shown as red crosses). (b) MADcomb/MIRAS phased, 
]°Fr[ × FOM weighted, electron-density map (13.0-2.5A resolution) into which the original SiRHP model was built. (c) MADPHSREF 
phased, I°FTI × FOM weighted, electron-density map (13.0-2.5 A resolution). This map is much improved from (a) and even more continuous 
than (b). (d) MADPHSREF/MIRAS~t phased, I°FTI × FOM weighted, electron-density map (30.0-2.5 A resolution). This map conforms more 
tightly to the model than (c), and the main-chain density is more continuous at the 2a contour level, both here and in regions not shown. The 
figure was rendered with XFIT (McRee, 1992). 
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Table 6. Correlation between the residual errors of 
anomalous differences 

Correlation coefficients between the residual errors of Bijvoet 
differences (Aa) and dispersive differences (Ao) taken at or between 
the three wavelengths of the experiment (A, B, and C) are given before 
(Initial) and after (Final) refinement of the anomalous scattering model 
and protein phases for simulated and SiRHP experimental data. 
Correlations were evaluated for SiRHP experimental data after Fe- 
atom positions, local scale, thermal parameters, FOM's and phases 
were refined over ten cycles with Ze -- 0.8. S atoms were included in 
the calculations. 

Simulated data with 
Gaussian errors SiRHP MAD data 

Resolution AAA/AAB AoAC/AoAB AAA/AAB AoAC/AoAB 
(A) Initial Final Initial Final Initial Final Initial Final 

zx~-6.0 0.70 0.09 0.84 0.49 0.87 0.48 0.93 0.82 
6.0-4.5 0.48 0.02 0.74 0.51 0.74 0.33 0.88 0.74 
4.5-3.8 0.32 0.04 0.69 0.54 0.46 0.25 0.82 0.75 
3.8-3.2 0.38 0.09 0.71 0.56 0.38 0.23 0.86 0.85 
3.2-2.9 0.35 0.01 0.72 0.55 0.27 0.09 0.77 0.75 
2.9-2.7 0.37 0.04 0.69 0.50 0.20 0.04 0.68 0.62 

factor will relate different wavelength-dependent values 
of F~ (Ai), and different wavelength-dependent values of 
AF'~(Aij ). Another source of correlated error among 
dispersive differences arises because two or more 
differences will be taken relative to the same remote 
wavelength. Finally, for a MAD experiment where 
redundant measurements collected at different times, 
from different crystals, or from different regions of 
reciprocal space are not merged, observations measured 
from the same crystal orientation, through the same 
path-lengths and recorded in close spatial proximity on 
the detector face will be affected by the same 
experimental errors. The benefits of compensating for 
correlated error within a set of independent observa- 
tions relating to an individual reflection are seen by 
larger values of R c, the electron-density map correlation 
coefficient (Table 4). These improvements reflect not 
only reduced phase error, but also more appropriate 
FOM weights being applied to each reflection in the 
Fourier synthesis (Table 4). Refinement of individual 
thermal factors was stable only when the bivariate 
distributions were used and the refinement of these 
parameters does decrease the refinement residual and 
the phase error. 

The mutual dependence of the anomalous differences 
on the Fe-atom positions and the normal scattering 
phase estimate caused complete correlation between the 
two Bijvoet difference error residuals and between the 
two dispersive difference error residuals when refine- 
ment was carried out against error-free simulated data. 
In contrast, there was no correlation between the 
residual errors from Bijvoet difference terms and from 
dispersive difference terms, justifying the strategy of 
separating the anomalous signal into Bijvoet and 
dispersive differences. When data with normally 
distributed amplitude errors were refined, initial 

correlations did exist between pairs of Bijvoet residuals 
and between pairs of dispersive residuals, but as 
convergence was reached and systematic errors in the 
protein phase and anomalous scattering model became 
small compared to the random amplitude errors, the 
correlations decreased to zero for the Bijvoet terms and 
0.5 for the dispersive terms (the correlation of 0.5 arises 
from both dispersive differences being measured 
relative to the same remote wavelength) (Table 6). In 
the SiRHP experimental data, the anomalous and 
dispersive correlations are larger and did not reduce 
to their respective minimum values of 0.0 and 0.5 on 
convergence. This reflects either substantial errors 
remaining in the anomalous and normal scattering 
models used to calculate the anomalous differences, or 
additional correlations within the experimental data 
resulting from systematic measurement error for 
observations collected closely together in time and 
reciprocal space. Compensation for correlations in 
Bijvoet and dispersive residuals produced a faster and 
more accurate convergence when errors of the same 
direction were added to each simulated Bijvoet 
difference for a given reflection, but did not appreciably 
improve refinement against simulated data containing 
Gaussian errors without built-in correlations between 
terms. 

3.9. An empirical histogram-matching scheme for 
weighting MIR to MAD phases 

Empirical histogram matching of electron-density 
distributions is an effective scoring criterion for relative 
weighting of phases obtained from different sources. 
Reasonable estimates of MAD phase errors are 
provided by the difference refinement, but MIR phase 
errors can be grossly underestimated, and accordingly, 
their FOM's will be overestimated (Crane et al., 1997). 
To compensate for such errors, the variances of the 
MIR probability distributions can be inflated by 
applying a multiplicative factor to their ABCD coeffi- 
cients. Correlating electron-density histograms calcu- 
lated from a combined MAD/MIR FOM-weighted map 
of SiRHP with a similar standard histogram calculated 
from a 2F o -F~  map of a refined protein crystal 
structure with similar solvent content identified the 
most beneficial MIR phase weights relative to the MAD 
phases (Fig. 5). Resolution-dependent weights were 
then systematically applied to the MIR phases and each 
resultant combined phase set was scored against a 
suitable standard histogram to improve the weighting 
scheme. The correlation coefficient (RH) between the 
SiRHP MAD/MIR combined map and the standard 
histogram reflected the average weighted phase error in 
the combined phase set quite well, despite only subtle 
contrast in Rn (Fig. 5). As expected, considerable down 
weighting of the MIR phases, especially at high 
resolution, resulted in the best histogram correlation 
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and a map that most closely mimicked the 2F o - F~ map 
calculated from the refined structure. This final 
combined MIR/MAD map (MADPHSREF/MIRAS n 
Table 5, Fig. 4) is considerably improved over the 
original MIR/MAD map used to build the initial 
structure of SiRHP. 
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Fig. 5. Phase weighting by histogram matching. A single multi- 
plicative scale factor (horizontal axis) was applied to the MIR 
Hendrickson-Lattman coefficients to increase or decrease the 
variance of the MIR phase distributions before addition to the 
MAD elicited coefficients. The weighting scheme was assessed by 
comparing correlation coefficients (Rn) between electron-density 
histograms calculated from the FOM-weighted phase-combined 
experimental map of SiRHP to a histogram generated from the 
2F o -F~ electron-density map of the uracil DNA-glycosylase 
(UDG) structure refined to 2.0A resolution (Mol et al., 1995). 
The UDG crystals have an estimated solvent content of 38%, which 
is similar to the SiRHP value of 40%. The histograms were 
calculated in 100 evenly spaced bins between minimum and 
maximum electron-density values, which were defined as 6or less 
or greater than the average electron-density value of 0.0 (F~xx~ was 
not included in the Fourier synthesis). This relative choice for the 
minimum and maximum electron densities avoids offsetting the 
histograms by the presence of especially large or small density 
values in a particular structure, due, for instance, to metal ions. The 
weighted phase error (w(A~)) reflects the correlation coefficient 
between the SiRHP and UDG histograms. There is discontinuity in 
the curve at 0 scale (no MIR contribution) because inclusion of MIR 
phases not only improved the histogram match by producing more 
accurate combined phases, but also by increasing overall complete- 
ness. Resolution-dependent MIR scale values further improved the 
weighting scheme. The data were broken into four equal divisions 
of (sin 0/A) 2, and MIR scale factors were systematically searched 
starting with the lowest resolution bin and proceeding through the 
higher resolution bins. Scale factors giving the highest correlations 
were kept and applied to their respective resolution bins while the 
higher bins were searched. The final set of resolution-dependent 
scale factors (1.0 for 10.0-5.0A, 0.6 for 5.0-3.5A, 0.4 for 3.5- 
2.8 A and 0.1 for 2.8-2.5 ,/k) reflected the MIR phase error (Crane 
et al., ! 997) and produced the combined map with the highest value 
of R n and the lowest weighted phase error (represented by the 
horizontal black bar and labeled Rsn). 

Table 7. Refinement of Fe4S 4 cluster asymmetry 

SiRHP FeaS 4 cluster asymmetries are compared for conjugate- 
gradient normal-scattering refinement in X-PLOR (Powell, 1977; 
Brfinger et al., 1987) ( l .6A X-PLOR), conjugate-direction normal- 
scattering refinement in TNT (Tronrud, 1992) ( l .6A TNT), and a 
full-matrix least-squares refinement of the Fe-atom positions against 
the anomalous and dispersive differences (2.5 ,~, AR). For the X-PLOR 
and TNT refinements, distances are shown for two different starting 
conformations where the coordinates of the entire model were given 
Gaussian-distributed random errors with an r.m.s, deviation of 
0.22,~,. In the normal-scattering refinements, atomic scattering factors 
for Fe atoms in the iron-sulfur cluster were set to the average of the 
values for Fe 2~ and Fe 3- to reflect the formal charge of +2.5 on the 
SiRHP Fe4S4 cluster irons. However, changing the Fe-atom scattering 
factors to represent either Fe z~ or Fe 3 ~ does not affect the converged 
cluster coordinates. For the anomalous refinements, which were 
carried out using data between 8.5 and 2.5,~, resolution, the average 
converged iron separations are given for 12 different random starting 
conformations (with an r.m.s, deviation of 0.65,~,). 

Fe4S n 1.6,~ X-PLOR 1.6A TNT 2.5,~ AR 

Distance (.~) 
Fel - -Fe2  2.80 2.80 2.75 2.74 2.68 
Fel - -Fe3  2.80 2.79 2.77 2.76 2.84 
Fel - -Fe4  2.70 2.70 2.66 2.67 2.67 
Fe2- -Fe3  2.79 2.76 2.72 2.72 2.75 
Fe2- -Fe4  2.77 2.76 2.75 2.73 2.73 
Fe3- -Fe4  2.81 2.80 2.76 2.76 2.79 
HFe- -Fe4  4.48 4.48 4.51 4.51 4.44 

3.10. The assessment of subtle asymmetries in the 
SiRHP Fe4S 4 cluster 

Three refinement procedures were applied for defin- 
ing the geometry of the FenS, * cluster in SiRHP. Powell 
conjugate-gradient normal-scattering refinement of 
SiRHP in X-PLOR (Powell, 1977; Briinger et al., 
1987) against 1.6,~ resolution synchrotron data, with 
the F e a S  4 cluster, cysteine thiolate ligands, and 
siroheme iron unrestrained (Crane et al., 1995), 
identified a subtle asymmetry in the F e 4 S  4 cluster 
cubane. At least one F e - - F e  distance (Fe l - -Fe4) ,  
involving the cubane iron bound to the siroheme- 
bridging thiolate ligand, is significantly shorter than the 
others (Table 7). Normal-scattering refinement of 
SiRHP with conjugate-direction minimization as imple- 
mented in TNT (Tronrud et al., 1987; Tronrud, 1992) 
also identified the Fe 1 - -Fe4  distance as being shortest, 
although all of the distances were somewhat smaller 
compared with the X-PLOR refinement (Table 7). 
Conjugate-direction minimization uses a diagonal 
approximation of the normal matrix to weight parameter 
shifts by curvature, and thereby prevents the over- 
shifting and oscillatory behavior of parameters with 
large curvatures. These parameters can include the 
positional parameters for atoms with a relatively large 
number of electrons, such as the Fe atoms of SiRHP. 
Refinement of the Fe-atom positions against the multi- 
wavelength Bijvoet and dispersive differences has the 
advantage of only being dependent on the parameters of 
the anomalously scattering atoms. Thus, the refinement 
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is much more overdetermined than a normal-scattering 
refinement and the normal matrix can be inverted to 
determine estimated standard deviations (e.s.d.) on 
individual parameters. 

Refinement of the SiRHP Fe-atom positions was 
carried out against the multiwavelength anomalous 
differences with MADPHSREF by assuming a fixed 
value of ~e calculated from the X-PLOR refined 
structure. Because there was considerable noise in the 
anomalous data, especially in the high-resolution shells, 
many differences did not carry the correct sign; hence, 
convergence could not be reached if all reflections were 
included. In the final cycle of the probabilistic rejection 
approach of (44) and (45) 8079/11 990 reflections were 
accepted in the range of 8.5-2.5,4, resolution. The 
refinement consistently produced a final residual R 
factor [see R(sphere) in legend to Fig. 3] of 0.458, 
independent of starting conformation. Refinement 
against Bijvoet differences from only one wavelength 
was unstable and did not converge to reasonable 
geometry. The e.s.d. 's calculated by MADPHSREF (see 
below) are a function of the goodness of fit, which 
directly represents the agreement between residuals and 
the accuracy of the model employed. 

The anomalous difference refinement with 
MADPHSREF also verified the smaller F e l - - F e 4  
separation, but suggested that a second separation, 
F e l - - F e 2 ,  was as small (Table 7). The e.s.d, for one 
Fe - -Fe  separation in a single refinement was 0.04,~,; 
however, the e.s.d, determined from the distribution of 
12 different converged coordinates sets, each refined 
frOm oPartly randomized starting conformations, was 
0.01A, which indicates that the minimum is well 
defined. Thus, all three refinement protocols suggest 
that the shortest F e - - F e  separation in the SiRHP cluster 
is between Fel and Fe4, although there is some 
variation in the relative lengths of the other refined 
distances. With the exception of F e l - - F e 2  separation 
in the anomalous refinement, all other inter-iron 
distances are ~0.1 A longer than the F e l - - F e 4  
separation (Table 7). Such deviations of the SiRHP 
cluster from typical FeaS 4 cluster D4h point symmetry, 
are consistent with resonance Raman spectroscopy 
(Madden, Han, Siegel & Spiro, 1989) and may have 
implications for electronic coupling to the siroheme. 
With high-resolution anomalous diffraction data, refine- 
ment against multiwavelength anomalous differences in 
this manner may help determine extremely accurate 
geometries for protein metal clusters in other systems. 

4. Conclusions 

For MAD data with large experimental errors and 
limited phasing restraints (such as were collected on 
SiRHP), calculating protein phases directly from the 
observed Bijvoet and dispersive differences appears 
more effective than determining wavelength-indepen- 

dent terms with the complete scattering equation. This 
latter approach is more rigorous and has proven very 
successful when the data are well measured, strong and 
redundant. However, the least-squares optimization of 
local parameters will suffer from indeterminacy if there 
are an insufficient number of measured observations per 
individual reflection and reasonable probability distri- 
butions are difficult to obtain when the phases are not 
well restrained. MADPHSREF uses all observations to 
optimize simultaneously a global anomalous scattering 
model from which local phases are calculated, as 
opposed to initially estimating local parameters for 
each reflection and then refining a global anomalous 
scattering model against these local parameters. The 
MADPHSREF approach requires as little as one pair of 
observations to define a probability distribution for a 
given reflection. 

Phase refinement against anomalous differences has 
been applied successfully in the past. In a treatment 
analogous to phase determination by isomorphous 
replacement, the relationship expressed in (12) has 
been used to map dispersive differences back to a single 
wavelength and generate pseudo-native and pseudo- 
derivative data sets, while assuming ~/:D constant for all 
wavelengths (Terwilliger, 1994). However, with multi- 
ple types of anomalous scatterers present, U:D and ~:A, as 
well as IF,~'(A,)I and I/XF,~(,X,j)I become wavelength- 
dependent. This also implies that U:A ~ U:o +7r/2.  
Thus, with multiple anomalous scatterers, it is prefer- 
able to obtain phase information directly from the 
observed Bijvoet and dispersive differences rather than 
map these differences back to a monochromatic model 
while assuming the anomalous phase invariant. The 
relationship of (19) has been used to refine anomalous 
scatterer positions for myohemerythrin (Sheriff & 
Hendrickson, 1987) and to phase completely the 
structure of crambin from the intrinsic anomalous 
scattering of its S atoms (Hendrickson & Teeter, 
1981). However, for the refinement of the anomalous 
scatterer positions these analyses select only large 
Bijvoet differences and hence assume unit magnitude 
for the cosine of (19). 

Despite its limitations the procedure of iteratively 
calculating phases between cycles of least-squares 
refinement, long applied to the determination of 
heavy-atom positions in MIR, is better suited for 
MAD data. This least-squares approach is not a true 
maximum-likelihood optimization, because ~p (an 
implicit function of the refined parameters) is fixed 
during each cycle and the variances are continually 
updated. These approximations introduce biases that 
can result in over-estimated occupancies for dominant 
heavy atoms, although averaging variances over all 
phase values mitigates these effects (Otwinowski, 
1991). This problem is diminished for native metal 
clusters of a MAD experiment where occupancies can 
usually be assumed to be one. However, thermal factors 
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for the anomalously scattering atoms reflect a resolu- 
tion-dependent occupancy and thus they can be 
potentially underestimated. Crystal isomorphism inher- 
ent in a MAD experiment also simplifies the application 
of this method. Although correlations in error are 
potentially more pervasive in a MAD experiment 
compared to an MIR experiment, multivariate normal 
distributions are partially able to compensate, as 
demonstrated by the improvement in error estimation 
and convergence that these modifications yield with 
SiRHP experimental data. 

The effectiveness of most de novo phasing procedures 
for macromolecules depends on the reconciliation of a 
well defined perturbative scattering model with pairs of 
observed amplitudes. Parameterizing anomalous scat- 
tering models for native protein metal clusters can be 
difficult, especially where multiple types of anomalous 
scatterers are coordinated in asymmetric geometries. 
MADPHSREF compensates for multiple types of 
anomalous scatterers and allows the incorporation of 
prior structural knowledge in the form of distance 
restraints on the anomalous scatterers. In the presence 
of large observational errors, the anomalous scattering 
from SiRHP's 20 S atoms did not appreciably invalidate 
the assumption of an anomalous scattering model 
containing only iron. However, if experimental errors 
are relatively small, or the ratio of S atoms to metal 
atoms were larger, S atoms contained in protein-metal 
clusters could make a significant anomalous scattering 
contribution, and accounting for this may be warranted. 
The SiRHP anomalous refinement demonstrates that 
geometrical restraints can considerably assist in con- 
vergence to the true conformation. 

Finally, our results with SiRHP demonstrate that full- 
matrix least-squares refinement of the anomalous 
scatterer coordinates against high-resolution MAD 
data can generate potentially more accurate protein 
metal-center models. Additionally, this method pro- 
vides error estimates for positional parameters that are 
generally unattainable from conventional protein crys- 
tallographic refinement. The ability to define accurately 
the geometry and coordination of metal ions in enzymes 
should help us further understand the influence of the 
protein moiety on these centers and ultimately how 
metallic cofactors and proteins couple to achieve 
catalysis and control electron transfer. 
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